Single MoleculeFluorescence Microscopy

Single Molecule Microscopy

Classical biological techniques focus on describing the behavior of large ensembles of molecules. However, this doesn’t allow for the identification of subpopulations within the ensemble or show how these subpopulations behave under differing experimental conditions. The only way to investigate the behavior of single molecules or subpopulations is under strict experimental conditions, guaranteeing that each molecule is in the same state, one at a time.

Single-molecule fluorescence microscopy represents a subset of fluorescence microscopy that uses fluorescent tags to detect and analyze individual single molecules. This allows the activity of single molecules to be visualized with high signal-to-noise without disturbing the physiological conditions of the biological system.

Single molecule imaging is typically a very low-light technique so one of the main challenges is to collect as many of the emitted photons as possible to maximize signal to noise ratio so a highly sensitive camera is desired.

Prime 95B

Extremely sensitive, 95% quantum efficient sCMOS camera with 11 µm pixels and EMCCD level detection.

Go beyond EMCCD for single molecule imaging with the back-illuminated Prime 95B, which features an equivalent level of detection but with a faster speed, larger field of view and no EM-gain aging or excess noise.

The Prime 95B allows exposure times to be lowered significantly to increase acquisition speed and reduce photobleaching and photodamage to the lowest levels possible on an sCMOS camera.

Single Molecule Microscopy samples
Kinetix photo

Kinetix

High sensitivity, 95% quantum efficient sCMOS camera with an incredibly high 400 fps full-frame speed and a massive 29.4 mm diagonal field of view.

The speed of the Kinetix significantly outperforms typical sCMOS devices. With a full-frame framerate of 400 fps and a 10 megapixel sensor, the Kinetix delivers over 4000 megapixels/second which ensures that no event goes undetected.

The high quantum efficiency and low read noise combined with the balanced 6.5 µm pixel size also delivers the sensitivity needed to get the highest image quality from a single molecule system without sacrificing resolution.

Single Molecule Microscopy samples
Prime BSI Express Camera

Prime BSI Express

High sensitivity, 95% quantum efficient, sCMOS camera with 6.5 µm pixels,
1.0 e read noise and 95 fps full frame speed.

The high quantum efficiency and low read noise combined with the balanced 6.5 µm pixel size offers high sensitivity imaging whilst achieving Nyquist sampling with the most popular objective magnifications used for single molecule imaging.

Customer Stories

Interferometry and Li Mapping

Dr. Matthew Gebbie University of Wisconsin-Madison

“The [Prime 95B] is a uniquely powerful instrument for us, we didn’t want to deal with EMCCDs, and with the Prime 95B we can continually push the limits with lower intensity signals at higher framerates.”

Read More

Live-Particle Tracking

Fluorescent image of CCMV (cowpea chlorotic mottle virus) particles.
Dr. Adam Wexler Wetsus

“The increase in QE was huge, and really helped with our application.”

Read More

Super Resolution Imaging

Comparison of live cell imaging of FtsZ ring organization during bacterial cell division using a Prime BSI and an EMCCD camera.
Dr. Seamus Holden Newcastle University

“The thing that really impressed me is how uniform the sensor is – far fewer hot pixels, noisy pixels and stripes than the last generation of sCMOS cameras. I hardly see a use for EMCCDs anymore.”

Read More

Contact

Subscribe to our mailing list

Good news! You have already signed up to our mailing list. If you would like to amend your preferences, please look out for one of our emails- don’t forget to check your junk folder just in case.